Using Universal Processors for the Increase of
Evolvability in Digital Ecosystems

Attila Nagy

University of Debrecen
Institute of Mathematics and Informatics
nagyat@dragon.klte.hu

Abstract. Does the evolution work in the digital medium? Can com-
puter programs written in an assembly-like language be evolved? — De-
spite the significant progress the question remains open. This paper tries
to find another missing piece of the puzzle: the evolution of the decoding
system. We suggest to apply the idea of the Universal Turing Machine
in order to ensure the possibility of open-ended evolution. The first steps
of the implementation are also presented.

Almost 10 years have passed away since the birth of Tierra [3], which was the
first software system for self-replicating evolving computer programs, so called
digital organisms. Tierra and another richly developed system called Avida [1]
(first described in [4]) have achieved several valuable results. For example Avida
introduced some new approaches in the research such as information theory,
thermodynamical laws and so on. Unfortunately the results can’t be treated as
the universal laws of evolvability, for the experiments are not general enough.
By the development of Physis [2] we tried to provide a general platform for
conducting universally valid experiments. Physis can incorporate both previ-
ously mentioned systems and any other variance while the measurement tools
are the same. This feature is necessary for comparative results. The development
process shed light on something: this universality is still not enough. We can try
numerous fixed architectures in order to provide general results but this way we
use only processors which can’t evolve. Our main assumption is that the fixed
processor structure and instruction set makes the open-ended evolution impossi-
ble. First we describe the problem in several aspects then consider some possible
solutions. One of them seems to be powerful: the idea of universal processors.
We elaborate this concept to some extent.

1 Semantics outside

The existing implementations of digital evolution have the following structure:
the genome consists of assembly instructions that describe the behaviour of or-
ganisms. The instructions need a decoding system in order to become an actual
behaviour (i.e. self-replication, performing computations) as they are pure syn-
tactical symbols. The semantics is not in the genome but in an outer entity —



namely the processor.[7] Without the machines digital organisms are just like
viruses. They need a host machine in order to reproduce or to do something.

1.1 Which one is good?

How de we know which decoding system, which processor is suitable for digital
evolution? We know to some extent which one is good or actually used in carbon-
based life but we can make only rough guesses in the digital world: we create
virtual processors just for trying.

Physis tackles this problem as it allows to create and use different processors.
By testing several architectures we may get the general properties of virtual
machines needed by evolvability. But this possibility — as we will see — is not a
significant improvement.

1.2 Fixed versus evolvable decoding systems

The processor is more or less fixed. More or less means that we can use different
subsets of the whole instruction set getting different processors but the core
architecture of those remains the same.

Although the instruction set can be varied for each experiment it is not
changed during the evolutionary scenario. This fact has negative implications.
The phenomenon is called complexity ”catastrophe” [5] When the complexity
of organisms increases they tend to be more fragile as the genome-size becomes
longer. That’s probably because organisms cannot invent new symbolic represen-
tations which allow shorter size and the speed of the development gets extremely
slow. The static structure of the decoding systems renders the open-ended evolu-
tion impossible.

2 Possible partial solutions

Here come two possible solutions: one for the preservation of useful sequences
and another for providing evolvable processors. Neither are too elegant but they
might partially solve the problem and of course they raise many questions re-
garding the implementational details.

2.1 Frozen instructions

There can be a new attribute for each memory-cell or instruction called frozen
which means that the location cannot be mutated. This way useful sequences can
be locked, preserved. This can be done by the organism itself (via the execution of
a special freeze instruction) or some other mechanism in the digital ecosystem.



2.2 Instruction allocation

Processors may have a possibility to define new instructions during the run.
These instrunctions correspond to subroutines but their codes are not in the
organism’s genome but in the processor’s internal memory area. The organisms
take care of defining these new instructions by copying some part of their genome
into the processor.

3 The Universal Turing Machine

The very old idea of Universal Turing Machine (UT M)[8] can be applied in
digital evolution as an elegant solution for the lack of evolvable decoding systems.

3.1 The definition

The UT M’s input tape contains a string with the following structure:

mtc

where m is the description of a machine M, ¢ is the code of a program and #
is a special marker. The output of the UT M is exactly the same as the output
of the M machine started with the ¢ program since it simulates M step-by-step.
It’s a fundamental model of all possible computations.

3.2 Digital organism: genetic code plus the decoder

Applying the UT' M model in digital evolution systems can be done this way: the
organsim’s genome contains not only its code but its decoding system as well.
Of course Turing machines can’t be used without modifications since the code
would be extremely long and because of the theoretical structure we would loose
the connection with the software industry. This way the digital organisms are
run on a UT M-like universal processor (UP). The UP first builds the virtual
processor needed by the organism and then simply runs the organism’s code on
it. The organism should replicate fully, it should copy the processor-description
as well. The description can be mutated just like the instructions. Something
similar happens in natural organisms.

4 The Universal Processor

The idea of universal processors raises several questions.

The universal language of processors How can a machine be efficiently en-
coded? In theoretical proofs the efficient encoding is not important but here
we need an economical method. It may be very hard to construct this de-
scriptive language. How can we construct an ancestor organism with a sim-
ple decoding system? We have to make a functional decomposition of self-
replicating programs.



Loosing control The idea of universal processors as the underlying physics of
the digital world makes the programs even harder to understand. We need
very high-level debuggers and semantical analyzers.

These questions can be summarized in one: How can we construct the Uni-
versal Processor? In the following sections one possible implementation is pre-
sented. It’s not yet a description of an existing software but it’s probably worth
discussing the implementation details. (This is one of the main intentions of this

paper.)

4.1 The structure

The structure consists of a continuous memory area, one small (8,16) array of
memory cells. The size of the cells is arbitrary (8, 16, 32, 64). 16 seems to be a
good choice for alife experiments. The role of the first cell is fixed for all possible
processors: it serves as an instruction pointer. The remaining part can be used
as registers, stacks or queues.

4.2 The instruction set

The instruction set should fulfill the following requirements:

— each instruction should be as simple as possible:
e an instruction as elementary building block represents a single action
not a compund one
e an instruction is independent from any addressing mode
— the instruction set should be complete (any more complex operation should
be easily definiable)

The instructions are without the type and number of operands. They’re de-
fined in the organism’s genome. As a first sketch the instruction set is the fol-
lowing;:

Data transfer

in reads data from environment

out |writes data into the environment

load |copy from memory to a structural element
store|copy from a structural elements to memory
move | general move between structural elements

Control-flow|

jump |unconditional jump
ifzerolskips the next instruction if not zero

|Arithmetic and logic]
compare, add, sub, neg, div, mod, shift-1, shift-r, and, or, xor,
not ...




Biological

|dividesplits the child and the parent program

allocate|allocates memory
gfac gets the index of the processor currently in facing
sfac sets the index of the processor currently in facing

5 Processor Description Language

5.1 Description of the structure

Each structural primitive has a corresponding symbol and we need a special
mark for sectioning:

R register
S stack
Q queue
B blank

For example the RRSSSBSS string represents two registers and two stacks with
sizes of 3 and 2. (A stack or queue of size 1 acts as a register, so it would be
another possible choice to use SB instead of R.)

5.2 Description of the instruction set

The description of an instruction begins with an I symbol after which comes the
code of the newly defined instruction. The semantics of the instruction is defined
by a microprogram of the UP. Shortly:

I icode [inst [op1]...]...

It can be said that a CISC processor is defined on a RISC architecture. The
operands point to structural elements which are indexed by a positive number.
(Indices are computed mod N where N is the number of structural elements.)

6 Conclusions

The UP idea should be implemented and tried out. Of course the ”traditional”
specific processors can still be used for code-optimization and other simple evo-
lutionary scenarios.

New developments in the hardware industry make the UP-concept more
feasible. The Crusoe processors are just like universal processors. [6]



References

©w

Avida. http://dllab.caltech.edu. Digital Life Laboratory.

. Physis. http://physis.sourceforge.net. The homepage of the open-source de-

velopment.

Tierra. http://www.isd.atr.co.jp/ “ray/. The homepage of Thomas S. Ray.

C. Titus Brown Chris Adami. Evolutionary learning in the 2d artificial life system
7avida”. Kellog Radiation Lab, California Institute of Technology, Pasadena, 1994.
Stuart A. Kauffman. The origins of order - Self-Organization and Selection in
Evolution. Oxford University Press, New York, 1993.

Alexander Klaiber. The techology behind the crusoe processors, 2000. http://www.
transmeta.com.

Tim Taylor. Some representational and ecological aspects of evolvability. EVOLV-
ABILITY WORKSHOP at the Seventh International Conference on the Simulation
and Synthesis of Living Systems, 2000.

Alan Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, 1936.



